黑洞辐射的存在仿佛意味着,引力坍缩不像我们曾经以为的那样是终究的、不成逆转的。如果一个航天员落到黑洞中去,黑洞的质量将增加,但是终究这分外质量的等效能量将会以辐射的情势回到宇宙中去。如许,此航天员在某种意义上被“再循环”了。但是,这是一种非常不幸的不朽,因为当航天员在黑洞里被扯开时,他的任何小我的时候的观点几近必定都达到了起点!乃至终究从黑洞辐射出来的粒子的种类,普通来讲都和构成这航天员的分歧:这航天员所遗留下来的独一特性是他的质量或能量。
因为能量不能无中生有,以是粒子反粒子对中的一个朋友具有正能量,而另一个具有负能量。因为在普通环境下实粒子老是具有正能量,以是具有负能量的那一个粒子必定是短折的虚粒子。是以,它必须找到它的朋友并与之相互泯没。但是,因为实粒子要破钞能量抵当大质量物体的引力吸引才气将其推到远处,一颗实粒子的能量在靠近大质量物体时比在阔别时更小。普通环境下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,乃至在那边实粒子的能量都可以是负的。是以,如果存在黑洞,带有负能量的虚粒子落到黑洞里能够变成实粒子或实反粒子。这类景象下,它不再需求和它的朋友相互泯没了。它被丢弃的朋友也能够落到黑洞中去。或者因为它具有正能量,也能够作为实粒子或实反粒子从黑洞的邻近逃脱 。对于一个远处的察看者而言,它就显得是从黑洞发射出来的粒子一样。黑洞越小,负能粒子在变成实粒子之前必须走的间隔越短,如许黑洞发射率和表观温度也就越大。
遵循爱因斯坦方程E=mc2(E是能量,m是质量,c为光速),能量和质量成反比。是以,往黑洞去的负能量流减小它的质量。跟着黑洞丧失质量,它的事件视界面积变得更小,但是它发射出的辐射的熵过量地赔偿了黑洞的熵的减少,以是第二定律从未被违背过。
但是,即便我们不能把握来自这些太初黑洞的辐射,我们观察到它们的机遇又如何呢?我们能够寻觅太初黑洞在其首要保存期里收回的伽马射线辐射。固然大部分黑洞在很远以外的处所,从它们来的辐射非常弱,但是从它们全部来的总辐射是能够检测获得的。我们确切察看到如许的一个伽马射线背景:察看到的强度随频次(每秒颠簸的次数)的窜改。但是,这个背景能够,并且大抵是由除了太初黑洞以外的过程产生的。如果每立方光年均匀有300个太初黑洞,它们所发射的伽马射线的强度应如何随频次窜改。是以能够说,伽马射线背景的观察并没给太初黑洞供应任何必定的证据。但它们明白奉告我们,在宇宙中均匀每立方光年不成能有多于300个太初黑洞。这个极限表白,太初黑洞最多只能构成宇宙中一百万分之一的物质。