这是个拓扑学的题目,吕丘建想了想,一个闭的三维流形就是一个没有鸿沟的三维空间;单连通就是这个空间中每条封闭的曲线都能够持续的收缩成一点,或者说在一个封闭的三维空间,假定每条封闭的曲线都能收缩成一点,这个空间就必然是一个三维圆球。
“那么你找到了么?”,戴森懊凶过后立即辩驳。
第二题:请证明对于所谓射影代数簇这类特别完美的空间范例来讲,称作霍奇闭链的部件实际上是称作代数闭链的多少部件的(有理线性)组合。
感激日月兮同光、萧幻、蜻蜓的翅膀、不应时宜的猪、书友151114070946457、无神论爽、~。喵了个咪和我是龙狂的打赏。你们太给力了,这么快就到6000保举了,找就加更,爱你们么么哒!
抱着万一的但愿,吕丘建擦了把汗,翻到最后一道题目:给定一个团体域上的阿贝尔簇,猜想它的莫代尔群的秩即是它的L函数在1处的零点阶数,且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自在部分体积、统统素位的周期以及沙群有切确的等式干系。
不不不,这也不是一个能短时候处理的题目,算了吧,还是持续往下看吧,吕丘建苦笑着把目光移到第三道题目上面。
死定了!!!看完最后一个题目,吕丘建懊丧的低下头来,哪怕是答对一道题便能够通过,本身此次也过不了关啊!这七道题目要么是需求超乎平常的计算劲,要么是需求精美的解题思路,南传授如何会想到拿如许的题目来考本身?就算是他本人也做不出此中任何一道吧?
第六题触及到用微分方程来描述流体的活动,对于吕丘建来讲这道题和上面的五道题并没有太大的辨别,归副本身目前都没有想到解题的思路。
第五题更是夸大,需求完成这一证明不但需求高深的数学知识,还需求在物理上有非常高深的研讨,吕丘建现在还没有体系的停止物理学学习,处理这一困难更是无从谈起连他扫了一眼就决定放弃转而研讨下一道题。
“你有两个小时的时候能够答题!”,讲授助理帮他拿过答题纸和草稿纸等测验用品放到桌上,然后本身退到沙发上拿起一本杂志翻看起来。
天呐,就不能给我一个能摸着点眉目的题目么?吕丘建心中哀号着,这几个月来第一次对本身的智商产生了思疑。