(-∞,∞):表示全部实数,也可记为:-∞<x<∞
5、无穷调集a={1,2,3,4,…,n,…},b={2,4,6,8,…,2n,…},你能设想一种比较这两个调集合元素个数多少的体例吗?
调集的根基运算
1、调集的观点
3、函数的简朴性态
开区间a<x<b(a,b)
3、邻域:设a与δ是两个实数,且δ>0.满足不等式│x-a│<δ的实数x的全部称为点a的δ邻域,点a称为此邻域的中间,δ称为此邻域的半径。
1、子集:普通地,对于两个调集a、b,如果调集a中的肆意一个元素都是调集b的元素,我们就说a、b有包含干系,称调集a为调集b的子集,记作ab(或ba)。。
1、变量的定义:我们在察看某一征象的过程时,常常会碰到各种分歧的量,此中有的量在过程中不起窜改,我们把其称之为常量;有的量在过程中是窜改的,也就是能够取分歧的数值,我们则把其称之为变量。注:在过程中另有一种量,它固然是窜改的,但是它的窜改相对于所研讨的工具是极其藐小的,我们则把它看作常量。
1、函数与极限
我们凡是用大字拉丁字母a、b、c、……表示调集,用小写拉丁字母a、b、c……表示调集合的元素。如果a是调集a中的元素,就说a属于a,记作:a∈a,不然就说a不属于a,记作:aa。
5、全部实数构成的调集叫做实数集。记作r。
以上我们所述的都是有限区间,除此以外,另有无穷区间:
2、函数的单调性:如果函数在区间(a,b)内跟着x增大而增大,即:对于(a,b)内肆意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数在区间(a,b)内跟着x增大而减小,即:对于(a,b)内肆意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数干系的体例便是表格法。例:在实际利用中,我们常常会用到的平方表,三角函数表等都是用表格法表示的函数。
2、交集:普通地,由统统属于调集a且属于调集b的元素构成的调集称为a与b的交集。记作anb。
card(a)card(b)=card(aub)card(anb)
2、统统正整数构成的调集叫做正整数集。记作n或n。
2、在平面直角坐标系中,调集c={(x,y)|y=x}表示直线y=x,从这个角度看,调集d={(x,y)|方程组:2x-y=1,x4y=5}表示甚么?调集c、d之间有甚么干系?请别离用调集说话和多少说话申明这类干系。
3、全部整数构成的调集叫做整数集。记作z。
4、对于有限调集a、b、c,能不能找出这三个调集合元素个数与交集、并集元素个数之间的干系呢?
即cua={x|x∈u,且xa}。
1、并集:普通地,由统统属于调集a或属于调集b的元素构成的调集称为a与b的并集。记作aub。(在求并集时,它们的大众元素在并集合只能呈现一次。)
2、描述法:用调集统统元素的共同特性来表示调集。
3、已知调集a={x|1≤x≤3},b={x|(x-1)(x-a)=0}。试判定b是不是a的子集?是否存在实数a使a=b建立?