“……第六个,操纵拓扑的体例证明。”
“我们能够定义整数集上的一个拓扑,其开集由且仅由空集?及算术序列 a?+ b (a ≠ 0 和 b 皆为整数)的并集构成。不难证明,如此定义的开集满足拓扑的定义,即:……”
“谢了。”
程诺咕咚咕咚喝了半瓶,等嗓子里那种不适感畴昔,道,“之前说到哪了,哦,我讲完第三个证明法了,上面说第四个。”
“第七个,操纵素数在信息、编码等范畴的利用停止证明。过程很简朴,正整数 N 都可分化为素数的连乘积:N = p1m1・p2m2...”
程诺发觉到他们迷惑的小眼神,哈哈笑了笑,“我明白你们心中的迷惑,拓扑学仿佛和数论是两个很不想干的范畴,为甚么我却这么说。等我讲完,你们就清楚了。”
本觉得程诺的气力只是和他们两人在伯仲之间罢了。现在感受,就程诺现在表示出来的气力,在他们黉舍担负副传授都够格了吧!
这家伙……真的只是一个研讨生?
两人齐齐小鸡啄米般点头,脑中不竭回味着程诺的话语。
可听程诺的语气,他仿佛还挺不对劲。
在两人瞠目结舌下,程诺娓娓说道,“第五个,能够操纵组合证明的体例。证明的思路是如许的:任何正整数 N 都可写成 N = rs2 的情势,此中 r 是不能被任何大于 1 的平方数整除的正整数, s2 则是统统平方数因子的乘积。假定素数只要 n 个,则在 r 的素数分化中……”
但程诺并没有留给两人太多回味的时候。
说完第九个证明法后,程诺就感觉口干舌燥,把残剩的半瓶矿泉水咕咚咕咚全都灌了下去。
见程诺好久没有了行动,阿谁卖力记录的同窗翻了翻本身写了有四页多的公式,咽了咽唾沫,谨慎翼翼的问道,“另有吗?”
但越简朴,越让两人吃惊不已。
同一个定理,一个能用一页论文将其证明的数学家,比之要用五页论文才气将其证明的数学家,学术程度起码要高上一倍。
“呃,程诺,你能不能再讲一遍。”卖力记录的那位门生挠挠头,略显难堪的说道,“我刚才帮衬得愣神,忘了记录了。”
“……由此,便得知素数有无穷多个。你们现在明白了吗?”
对于一个命题的证明过程,不管是哪个数学家,都但愿当然是越简朴越好。
程诺座下两位博士生仿佛乖宝宝般齐齐点头,一副门生谦虚受教的姿势。
“……第九个,我将其称为素数的单行证明,单行表达式为:0<∏sin(π/p)=∏sin(π(1+2∏p')/p),假定素数只要有限多个。若素数只要有限多个,则表达式中左边“<”右端连乘积中的 sin 的自变量π/p 全都在 0 和π之间, sin(π/p)> 0,……”
程诺忘了一眼在那握笔筹办记录的队友道,“如果累了的话,能够让他帮你。”
“有水吗,有点口渴了。”在两人还是思考之际,程诺哑着嗓子问道。
程诺清了清嗓子,持续说,“上面这几个都是和数论有关的,上面我再说几个其他范畴方向的证明体例。”
“呼呼-!”
还不是因为找不到更加简朴的证明体例。
程诺能在半个小时不到的时候里就能想出素数无穷的九种证明法,已经超出两人了解的范围。
要这三个证明法都仅仅是欧里几得证明法的变种的话,两位顶多会以为程诺对欧里几得证明法研讨颇深罢了,倒升不起任何崇拜之意。